Stability of Holter p. 3

5. Stability of 1st kind

5. Stability of first kind Notation: we will say that $f \in L^{p} + L^{7}$ if $f = f_{n} + f_{2}$ where $f_{n} \in L^{p}$, $f_{\ell} \in L^{2}$. Equipped with the Sololev inequality we are ready to prove The (stability of first kind, d=3) Let d=3 and essume that H=-13+V with $V \in L^{2}(\mathbb{R}^{3})+L^{2}(\mathbb{R}^{3})$ Then $E_{0} > -\infty$. $V_{-} = \max h - V, 0 h$ Pros f. Recall the Sobolew inequality in 3=3= $\|\nabla f\|_{L^2}^2 \ge C_3 \|f\|_6^2$ with C_3 a constant. The optimal constant is in fact $C_3 = \frac{2}{4} (4\pi^2)^{43}$. Recall $\mathcal{E}(\mathcal{A}) = \frac{1}{2} \int [\nabla \mathcal{A}(\mathcal{A}_{\mathcal{A}} + \int \mathcal{V}(\mathcal{A}) |\mathcal{A}(\mathcal{A}_{\mathcal{A}})|^2 d\mathcal{A} - Thus$ $\frac{1}{10^3} \qquad \text{M}^3$ $\mathcal{E}(\psi) \geq \frac{C_3}{2} ||\psi||_6^2 + \int V(x) ||\psi(c)|^2 dx \geq \frac{C_3}{2} ||\psi||_6^2 - \int V_{-}(c) ||\psi(c)|_{4x}^2 dx \geq \frac{C_3}{2} ||\psi||_6^2 - \int V_{-}(c) ||\psi(c)|_{4x}^2 dx \geq \frac{C_3}{2} ||\psi||_6^2 + \int V_{-}(c) ||\psi||_6^2 dx \geq \frac{C_3}{2} ||\psi||_6^2 dx \geq \frac{C_3}{2} ||\psi||_6^2 + \int V_{-}(c) ||\psi||_6^2 dx \leq \frac{C_3}{2} ||\psi||_6^2 dx \geq \frac{C_3}{2} ||\psi||_6^2 dx \geq \frac{C_3}{2} ||\psi||_6^2 dx \leq \frac{C_3}{2} ||\psi||_6^$

We cou	ald m	ow use	lälser	s irepus	Litz	
				11; 11 ₂		-1
to a	blain					
	5 12 ³	V_ (re) [4	?(v;) ² ≤	(V_ (2 2	\v _6^2	
then						
	when	111.		$\ V_{1}\ _{\frac{1}{2}}$ $\frac{C_{3}}{2}$		(**)
of co	ourse	1 is	not in	$L^{3/2}$ -	this is w	hy we
neos f	he l	- part	lo frig	s end we	e claim	that
ther	Cexi	str a	conste	ut 22	O Sua	h that
solis	fies	$M(se) = M \ln l(2)$	$m_1 \sim C_2$	V(x) - 2, (*) (proved be	(ъъ → скокае)
Lef	V	(メ) = 5	+ 52	with v	$a \in L^{3k}$,	ucch.
we h	ave					1ª
Ę	E (4) =	= Tq + j 123	(v. Cx1 -	2) 1. que 30	$\frac{1}{2} \frac{dx}{(x)} + \frac{1}{2} \frac{dx}{(x)} + \frac{1}{2}$	11 2 Slogior 12su 12 ³)
t	5 ~2 ((2) Inpereil	r gk Z	12 (Tap + 2	2 Lap, hap	2)
4 2	Trp "	+ X - 11 1	52 № 2	E Try +	2-11024	a) - 00

Exercise

h(x) = min (V(x) - λ , σ), V(x) $\leq \sigma$, V $\in L^{\frac{1}{2}}$. Then $\forall \leq r \sigma$ \exists costs σ λ such that $\| h M_{s_{1}} \leq \epsilon$.

Solution: $k \leq 0$ $k \leq 0$

≤ S W(x)1²/₂ &x → O =x (2)→∞ NVIZIM (indeed by nonohoue conv SIFI M/1 ≤m J → Jf) Jf)

What about other Simensions? The Sobolev inequality that we have proved works in \$225 where S=1 in the non-velativistic case. Thus we can consider \$3, too.

Exercise

Derive stability of first kind for non-velativistic matter in d>3. Solution

By the Sobolev inequality for 223 $\left| \nabla_{1} \psi \right|_{2}^{2} \geq \zeta_{1} \left\| \psi \right\|_{\frac{2d}{d-2}}^{2}$

Ja perticular de have $\int [V_{-}(e)] \ln e(e) l^{2} d_{X} \leq (\int V_{-} |\frac{d}{2})^{2/3} (\int \ln e(e) |\frac{d}{d_{2}})^{3}$ $le^{3} \qquad ln^{3} \qquad ln^{3}$ $\frac{2}{5} + \frac{4}{5} = 1 \qquad \frac{4}{5} = 1 - \frac{2}{5} = \frac{6}{5} = 3 = \frac{6}{5} = 3 = \frac{6}{5} = \frac{6}{5}$ We can now repeat all steps from d=3 case to conclude that $V \in L^{2}(n^{s}) + L^{\infty}(n^{s}), s \geq 3$ E, 2-20 if Lover dimensions <u>d=1,2</u> We now ask the sence question for d=1,2. Thm (Soboler's inequality & d=1,2) a) For any fGH'CR) we have $\|f\|_{\infty}^{2} \leq \|f'\|_{2} \|f\|_{2}$ Furthermore $|f(x) - f(y)| \leq ||f'||_2 |x - y|'^2$. (b) For any f6 te (122) we have $C_{2\rho} ||f||_{\rho}^{2} \leq ||gf||_{c}^{2} + ||f||_{c}^{2} \forall \rho \in \mathbb{Z}_{2\rho}$

Sketch of proof

(a) Assume fe Co CR). Then

 $f(\omega)^{L} = \int_{\infty}^{\infty} f(y)f(y)' dy - \int_{\infty}^{\infty} f(y)f(y)' dy$

Thus $|\{f(e)\}|^2 \leq \int |f||f'| + \int |f||f'| = \int |f||f|'$ $\begin{array}{c} c_{S} \\ = \end{array} \quad \||f||_{\infty}^{2} \leq \|f'||_{2} \quad \|f\|_{k} \\ \\ \end{array}$ One Hen uses a density argument since Co is dense in H'. the other bound follows from the fast that $|f(x) - f(y)| = | \overset{\circ}{S} f'(x) + | \leq (\overset{\circ}{S} + \overset{\circ}{O}')' (\overset{\circ}{S} f'(x) + \overset{\circ}{O}') \leq [\overset{\circ}{X}] | f |_{2}$ this follows since if fell'(M) => fel=0+ \$f'(Abr a a.e.

(obvious for smooth fets).

b) Let $g \in (1,2)$. Then $\|\hat{f}\|_{Q}^{q} = \int_{\Omega^{2}} |\hat{f}(\omega)|^{q} d\omega = \int_{\Omega^{2}} \frac{|\hat{f}(\omega)|^{2}}{n^{2}} \frac{(1+6F^{2}|\omega|^{2})^{\frac{1}{2}}}{(1+4\bar{u}^{2}|\omega|^{2})^{\frac{1}{2}}} d\omega$ $\leq \left(\int_{\mathbb{R}^{2}} \|\hat{f}(t_{0})\|^{2} (1 + 4t_{0}t^{1}) (t_{0}t^{1}) \int_{\mathbb{R}^{2}} (\int_{\mathbb{R}^{2}} \frac{dt_{0}}{(1 + 4t_{0}t^{1})(t_{0}t_{0})})^{1 - \frac{3}{2}} \right)^{1 - \frac{3}{2}}$ $= \frac{10^{2}}{10^{2}} \frac{10^{2}}{10^{2}} (1 + 4t_{0}t^{1}) \int_{\mathbb{R}^{2}} (1 + 4t_{$

where $\frac{1}{2l_q} + \frac{1}{2} = 1$ $h^{=} \frac{q}{2} \cdot \frac{2}{2} = \frac{q}{2} \cdot \frac{2}{2l_q} = \frac{q}{2} - \frac{q}{2} - \frac{1}{2} - \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2l_q} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot$ This implies $\int \frac{de}{(1+T_0 \overline{n}^2)^2} de < 0$ $= 3 \qquad ||\vec{F}||_{q}^{q} \leq C ||f||_{H'}^{2} = 3 \qquad ||\vec{F}||_{q} \leq C ||\vec{F}||_{H'}$ Using the thousdorff - long inequality Hflp =)if Mg for ++ = 1, qel1,2]. Since 1 < q < 2 => p < (2,0). For p=2 it is obviously true. Exercise Show the following theorem? The (Stability of motter in lower Bimensions) Let VE L'ERI + L'O(R) in d=1 and VE LIFE (me) + 2 - (me) in 5=2. then E. 2 - 00. Proof / solution we follow the argument for d?s. This time we have

 $\frac{d=1}{\int |V_{\mathcal{G}}|} |V_{\mathcal{G}}|^2 \, dx \leq (|V_{1}| || \psi_{\alpha})^2$ end Typ 2 C Hycello Note that here asing the Los is not nected but allows for more potentials. 5=2. Since Urfly 2 Che Kfly2 - KfK22 => ξC_{q}) = $C H_{q} H_{p}^{2} - C - \int |V_{-} C_{q}| |W_{q} C_{q} X^{2} \delta x$ $S_{\mathbb{R}^{2}} |V_{\mathbb{I}}| |v_{\mathbb{I}}|^{2} \leq (S_{\mathbb{V}}^{\mathbb{H}} \in \mathcal{J}^{\mathbb{H}} \in (S_{\mathbb{V}}^{\mathbb{H}} \cap \mathcal{J}^{\mathbb{H}})^{\mathbb{H}}$ $\frac{1}{n+\epsilon} + \frac{1}{p} = 1 = \frac{1}{p} + \frac{1}{p} = 1 - \frac{1}{n+\epsilon} = \frac{\epsilon}{n+\epsilon}$ $= \frac{1}{p} + \frac{1}{p} = \frac{1}{p} + \frac{1}{p} = \frac{1}{p} + \frac{1}{p} = \frac{1}{p}$ E(y) Z C Kyll - C - C llyll we use the 2-trick Los to get the band Since the we can mar. ZEC.